Oscillation of the Perturbed Hill Equation and the Lower Spectrum of Radially Periodic Schrödinger Operators in the Plane
نویسنده
چکیده
Generalizing the classical result of Kneser, we show that the Sturm-Liouville equation with periodic coefficients and an added perturbation term −c2/r2 is oscillatory or non-oscillatory (for r →∞) at the infimum of the essential spectrum, depending on whether c2 surpasses or stays below a critical threshold. An explicit characterization of this threshold value is given. Then this oscillation criterion is applied to the spectral analysis of twodimensional rotation symmetric Schrödinger operators with radially periodic potentials, revealing the surprising fact that (except in the trivial case of a constant potential) these operators always have infinitely many eigenvalues below the essential spectrum.
منابع مشابه
The extraordinary spectral properties of radially periodic Schrödinger operators
Since it became clear that the band structure of the spectrum of periodic Sturm–Liouville operators t = − (d/dr2) + q(r) does not survive a spherically symmetric extension to Schrödinger operators T = −1+V with V (x) = q(|x|) for x ∈ R , d ∈ N\ {1}, a wealth of detailed information about the spectrum of such operators has been acquired. The observation of eigenvalues embedded in the essential s...
متن کاملA Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts
In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...
متن کاملOn the Spectrum of a Limit-periodic Schrödinger Operator
The spectrum of the perturbed polyharmonic operator H = (−∆)l + V in L(Rd) with a limit-periodic potential V is studied. It is shown that if V is periodic in one direction in Rd and 8l > d+3, d = 1(mod4), then the spectrum of H contains a semiaxis. The proof is based on the properties of periodic operators. §
متن کاملDetermination of Periodic Solution for Tapered Beams with Modified Iteration Perturbation Method
In this paper, we implemented the Modified Iteration Perturbation Method (MIPM) for approximating the periodic behavior of a tapered beam. This problem is formulated as a nonlinear ordinary differential equation with linear and nonlinear terms. The solution is quickly convergent and does not need complicated calculations. Comparing the results of the MIPM with the exact solution shows that this...
متن کاملOperators with Singular Continuous Spectrum: Iii. Almost Periodic Schrödinger Operators
We prove that one-dimensional Schrödinger operators with even almost periodic potential have no point spectrum for a dense Gδ in the hull. This implies purely singular continuous spectrum for the almost Mathieu equation for coupling larger than 2 and a dense Gδ in θ even if the frequency is an irrational with good Diophantine properties. §
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999